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Neural Distributed Image Compression with 
Cross-Attention Feature Alignment
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Motivation: Decoder-only side information can provide immense 
reductions in the transmission rate in lossy compression schemes [1] !

Real-life applications include distributed sensor networks (e.g., 
autonomous vehicles, multiple static cameras, unmanned aerial 
vehicles).

System Model
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Distributed Image Compression
- DSIN [2] : Finds corresponding patches to refine the reconstructed 
image.
- NDIC [3] : Extracts ``common information” between correlated images.

- Our work, ATN : Employs cross-attention modules (CAMs) to align 
intermediate latent representations.

- Computes the attention globally, between patches of the latent 
representations over all channels, similarly to [4].

- This is similar to patch-matching idea in [2], but our method 
provides a differentiable alternative to search-based algorithm 
used in [2].
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•  - common features of two images 
•  - local/private features 

• Extract  from , send only 
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Proposed Architecture

• Align intermediate latents  and  (in 
) using cross-attention module (CAM) 

• Generate query  from , 
key  and value  from  (all learnable 
weight matrices!)
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Experimental Setup

KITTI Stereo 
(sync stereo)

Cityscape 
(sync stereo)

KITTI General 
(unsync stereo)

Rate-Distortion Performances
KITTI Stereo Cityscape

KITTI General Ablation w/ KITTI Stereo

Visual Examples

bpp=0.0912 bpp=0.0725

Synchronized stereo cameras

Unsynchronized stereo cameras

bpp=0.1134 bpp=0.1071

Original Image NDIC [3] Ours, ATN

Common and Local Information
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NDIC [3] Ours, ATN
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ℒ = (Rx + λDx) + α(Ry + λDy) + βRw


