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System Model: Point-to-point

Source coding

• Lossless
• Lossy

System model for point-to-point source coding.

Two competing goals in lossy compression:

• Rate
• Distortion
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System Model: Distributed Source Coding (DSC)

X
(Image 1)

Encoder Decoder
X̂

(Reconstruction
of Image 1)

Y
(Image 2)

Bitstream

010110...
Side

Information

System model for source coding with decoder-only side information.

• Slepian and Wolf, 1973 Lossless compression.
• Wyner and Ziv, 1976 Lossy compression.

• Pradhan and Ramchandran, 2003 (DISCUS) DSC using syndromes.
• Girod et al., 2005 Distributed Video Coding.
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Motivation for DSC Setup

Pair of correlated images with overlapping fields of view.

right camera
host computer
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Motivation for the DSC Setup

Pair of correlated images with overlapping fields of view.

left camera

right camera

side information
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Lossy Compression: Transform Coding

x
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Transform coding framework1.

min R

subject to E[D] ≤ Dc

L = R+ λD

1Figure provided is from Ballé et al., 2017.
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Lossy Image Compression using DNNs

• Ballé et. al., 2017 Deep end-to-end image compression.

L(ga, gs) = R+ λD,

R = Ex∼p(x)[− log p(ũ)︸ ︷︷ ︸
latent

]

• Ballé et. al., 2018 Deep end-to-end compression using
hyperpriors to model the prior distribution of the latent
variables.

R = Ex∼p(x)[− log p(ũ | z̃)︸ ︷︷ ︸
latent

] + Ex∼p(x)[− log p(z̃)︸ ︷︷ ︸
hyperprior

]
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Deep Image Compression with Side Information

• Ayzik and Avidan, 2020 (DSIN) - Reconstruct an intermediate
image, then find corresponding patches in the side information
image, which they use to refine the reconstructed image.
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SI-Finder

�

����

Encoder

Decoder

• Whang et. al., 2021 - Transform side information image to a
latent space. Use it together with the received latent variable to
jointly reconstruct the image.
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Proposed Solution



Distributed Source Coding Architecture

vx

x

w

y

vy

Graphical model. [Wang
et al., 2017]

DecoderEncoder

Distributed source coding architecture.
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Distributed Source Coding Architecture

vx

x

w

y

vy

Graphical model. [Wang
et al., 2017]

DecoderEncoder

Distributed source coding architecture.

vx , vy and w are independent latent variables:
• w - common information.
• vx and vy - independent information of x and y.
• Generate x and y as above.
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Distributed Source Coding Architecture

vx

x

w

y

vy

Graphical model. [Wang
et al., 2017]

DecoderEncoder

Distributed source coding architecture.

p(x, y,w, vx, vy) = p(w)p(vx)p(vy)pθ(x | w, vx;θx)pθ(y | w, vy;θy)

Factored joint prior distribution of the latent variables emerging
from the graphical model.
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Distributed Source Coding Architecture

vx

x

w

y

vy

Graphical model. [Wang
et al., 2017]

DecoderEncoder

Distributed source coding architecture.

qϕ(w, vx, vy | x, y) = qϕ(vx | x;ϕx)qϕ(w | y;ϕw)qϕ(vy | y;ϕy)

Factored variational approximation of the posterior distribution
emerging from the system architecture.
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Loss Function

min
ϕ,θ

Ex,y∼p(x,y)DKL
[
qϕ(ṽx, vy,w | x, y) || p(ṽx, vy,w | x, y)

]

= min
ϕ,θ

Ex,y∼p(x,y)Eṽx,vy,w∼qϕ

((
log qϕ(ṽx | x;ϕx) + log qϕ(vy | y;ϕy) + log qϕ(w | y;ϕf)

)
−
(
log pθ(x | w, ṽx;θx)︸ ︷︷ ︸

Dx

+ log pθ(y | w, vy;θy)︸ ︷︷ ︸
Dy

+ log p(w)︸ ︷︷ ︸
Rw

+ log p(ṽx)︸ ︷︷ ︸
Rx

+ log p(vy)︸ ︷︷ ︸
Ry

))

+ const.

Adding weights α, β and λ to control the contribution of the terms, we write:

L(gax, gsx, gay, gsy, f) = (Rx + λDx) + α (Ry + λDy) + βRw,

N. Mital, E. Özyılkan, A. Garjani, D. Gündüz | Neural Distributed Image Compression | DCC 2022 | 9/20



Loss Function

min
ϕ,θ

Ex,y∼p(x,y)DKL
[
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qϕ(ṽx, vy,w | x, y) || p(ṽx, vy,w | x, y)
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Neural Network Architecture
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Experimental Setup and Results



Datasets

KITTI Stereo

Cityscape

Example stereo image pairs from KITTI Stereo and Cityscape.
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Results with KITTI Stereo
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Comparison of different models in terms of PSNR.
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Results with Cityscape dataset
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Visual Comparisons

“Ours” refers to “Ours + Ballé2017” model.
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Visual Comparisons

(a) DSIN, bpp=0.0449

(b) Ours, bpp=0.0431
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Effect of hyperparameters α and β
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Effect of hyperparameters α and β

Common information (1st row), private information (2nd row) decomposition,
reconstructed images with similar reconstruction quality (3rd row).
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Conclusion

• Practical implementation of Wyner-Ziv setting with decoder-only
side information.

• First practical result that can truly benefit from side information.
• Neural network learns side information statistics despite not
having access to its realization.

• A novel approach by disentangling common and private
information.

• Significant reductions in bit rates by only sending the private
information to the decoder.

• Common information consists of global texture and color
details, which can be controlled using hyperparameters.

Code publicly available at: https://github.com/ipc-lab/NDIC
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