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Selected Publications
• E. Ozyilkan*, F. Carpi*, S. Garg, and E. 

Erkip, “Learning-based compress-and-forward 
schemes for the relay channel,” IEEE Journal 
on Selected Areas in Communications, 2025. 

• E. Ozyilkan, J. Ballé, and E. Erkip, “Neural 
distributed compressor discovers binning,” 
IEEE Journal on Selected Areas in 
Information Theory, 2024. 

• E. Ozyilkan, J. Ballé, S. Bhadane, A. B. 
Wagner, and E. Erkip, “Breaking smoothness: 
The struggles of neural compressors with 
discontinuous mappings,” Wksp. on Machine 
Learning and Compression @ NeurIPS 2024. 

• E. Ozyilkan, J. Ballé, and E. Erkip, “Learned 
Wyner–Ziv compressors recover binning,” 
IEEE Int. Symp. on Information Theory, 2023.

Selected Awards 

Service & Teaching 

• Co-organizer of the IEEE ISIT 2025 "Learn 
to Compress & Compress to Learn" Workshop. 

• Co-organizer of the NeurIPS 2024 Machine 
Learning and Compression Workshop. 

• Lead organizer of the IEEE ISIT 
2024 "Learn to Compress" Workshop. 

• Member of the IEEE IT Society Student and 
Outreach Subcommittee, 2024 - present. 

• Probability and Stochastic Processes, Fall 
2024 & 2022, Graduate Teaching Assistant 

• Deep Learning, Spring 2022, (Head) 
Graduate Teaching Assistant.

Industry Experience 

• Research interests Neural (data) 
compression, quantization, information 
theory, machine learning, signal processing, 
explainable AI. 

• PhD topic Bridging Theory and Practice:  
Advancing Distributed Data Compression 
and Communication via Machine Learning 

• Traditional compression removes redundancy 
within one source, while “distributed” 
compression leverages correlations across 
multiple data sources encoded 
independently but collaboratively.

• Challenge Exploiting correlation across users/
devices in distributed networks (IoT, cameras, 
sensors…) for practical distributed compression  
& inference. 

• Our solution Translating insights from 
information theory into real-world applications via 
machine learning. 

• Impact Edge computing/inference, federated 
learning, multi-view image/video compression. 
Foundations for fully distributed case. 

• Ongoing Diverse correlation structures and 
multi-modal data within users/devices; fully 
distributed, scalable and robust algorithms.

• IEEE Signal Processing Society 
Scholarship (2024–2026). 

• Best Reviewer Award, Neural Compression 
Workshop @ ICML 2023. 

• 2021 Ivor Tupper Prize in Signal 
Processing, Imperial College London.

• (Incoming) ML/CV Intern at Apple 
• Research Intern at InterDigital Video Lab 
• Research Intern at InterDigital AI Lab

• Contribution I: Leveraging 
Side Information Efficiently 

Approach Neural networks learn 
theoretically optimal “binning” 
(grouping), outperforming state-of-the-
art neural compressors. 
Result Near-optimal and interpretable 
performance that aligns with theory. 
Supported by Google Research 
Collabs Program.

Interpretation of Slepian-Wolf Coding
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• Contribution II: Cooperative 
Communication & Relaying 

Approach First proof-of-concept for 
learning-based “compress-and-
forward” relaying, building onto our 
prior work on distributed compression.
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Fig. 8: Visualization (best viewed in color) of the learned CF strategy
(marginal scheme in Fig. 2a) and demodulation decisions for the 4-
PAM modulation with W = 13 and relay rate ' ⇡ 1. The horizontal
lines denote the quantization boundaries on .' , and the colors
designate the transmitted index e\ (.'). The vertical lines denote
the hard decision boundaries for the demodulator, and the markers
represent the decisions. The transmitted symbols (denoted by cross,
triangle, star, square) are also reported near the axis for reference.

that the scheme effectively uses the side information .⇡

during compression. Next, we show how the relay’s likelihood
?(e\ (H') |F) operationally shifts the decision thresholds.

Fig. 8 illustrates the marginal CF scheme and the
demodulation’s hard decision regions (see (10)) for 4-PAM
with W⇡ = W⇡ = 13 dB and relay rate of ' ⇡ 1. The vertical
axis and horizontal axis show .' and .⇡ , respectively. The
colors represent the transmitted indices e\ (.') by the relay,
and the horizontal lines are the corresponding quantization
boundaries. Note that this neural CF architecture exhibits
binning (grouping) since non-adjacent intervals are assigned
to the same index (same color). It is worth noting that this
recovered grouping behavior is similar to the random binning
operation in the achievability proof of the WZ theorem [10]
and also in the achievability of CF [9]. This emergence of
learned one-shot binning behavior also explains the further
reduction in relay rate compared to the point-to-point model,
as illustrated in the experimental results shown in Figs. 3
and 4. Unlike the marginal scheme, the point-to-point model
(Fig. 2c), however, lacks access to the side information signal
.⇡ , which is available at the decoder, during compression.
Therefore, this latter model cannot learn a binning behavior
in the relay compressor (not depicted). In contrast, the
conditional variant (Fig. 2b) leverages the side information not
only during compression but also within the entropy coding
stage. This enables the conditional scheme to execute binning
over long sequences i.e., in a multi-shot fashion. Note that such
a high-order binning scheme, facilitated by the SW coder, is
inherently more efficient than the one-shot binning achievable
by an encoder at the relay. As the model e\ compresses each
source realization one at a time, it can only bin the quantized
indices at the relay in a one-shot fashion.
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Fig. 9: Visualization (best viewed in color) of the learned CF strategy
(marginal scheme in Fig. 2a) and demodulation decisions for the 4-
QAM modulation with W = 7 dB and relay rate ' ⇡ 1. Figure (a)
shows the quantization boundaries on .' (on the complex plane), and
the colors designate the transmitted index e\ (.'). Figures (b) and (c)
show the hard decision boundaries for the demodulator as a function
of .⇡ (on the complex plane), where different colors represent the
different decisions. Figure (b) represents the decisions when e\ (.')
corresponds to the blue index from Figure (a); Figure (c) represents
the decisions when e\ (.') corresponds to the red index from Figure
(a). The transmitted symbols (denoted by cross, triangle, star, square)
are also reported for reference.

The vertical lines in Fig. 8 denote the hard decision
boundaries, where the markers denote the decisions ,̂ .
We observe that the decision boundaries are shifted with
respect to the midpoints between transmitted symbols
(optimal boundaries without relaying). This highlights the
interpretability of our neural CF relaying scheme. For example,
when cross or star are transmitted, the index blue will be the
(most likely) relayed index. In this case, the decision regions
for cross and star at the destination are larger than the other
symbols.

Fig. 9 shows the learned marginal CF strategy for the
complex-valued 4-QAM modulation when W⇡ = W' = 7 dB
and relay rate of ' ⇡ 1. The vertical and horizontal axis
of each subfigure represent real and imaginary parts of .'

and .⇡ . Fig. 9a reports the output of the relay’s encoder,
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Bridging Theory and Practice: 
Advancing Distributed 
Data Compression and Communication
via Machine Learning

Approach: Neural networks learn theoretically 
optimal “binning” (grouping) [2, 3], 
outperforming state-of-the-art [4].
Result: Near-optimal and interpretable 
performance that aligns with theory.
Supported by Google Research Collabs Program.

Leveraging Side Information Efficiently

Challenge: Exploiting correlation across users/devices in distributed 
networks  (IoT, cameras, sensors…) for practical compression & inference.

My solution: Translating insights from information theory into real-world applications via machine learning.

Contribution I

Approach: First proof-of-concept for 
learning-based “compress-and-forward” 
relaying [5, 6], building onto our prior work [2,3].
Result: Boost in network throughput, crucial for 
accommodating connected devices in 6G.

Supported by NYU Wireless.

Cooperative Communication & Relaying
Contribution II

Impact: Edge computing/inference, federated learning, multi-view image/video compression [7, 8]. Foundations for fully distributed case.

Future: Diverse correlation structures and multi-modal data within users/devices; fully distributed, scalable and robust algorithms.

Publications and more: https://ezgimez.github.io

Example of a distributed compression and inference scenario, 
e.g., federated learning across a single user’s personal devices.

Source: Meta AIExample of a distributed compression and inference scenario, 
e.g., federated learning across a single user’s personal devices.


